skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tait, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 9, 2026
  2. Given any graph G G , the spread of G G is the maximum difference between any two eigenvalues of the adjacency matrix of G G . In this paper, we resolve a pair of 20-year-old conjectures of Gregory, Hershkowitz, and Kirkland regarding the spread of graphs. The first states that for all positive integers n n , the n n -vertex graph G G that maximizes spread is the join of a clique and an independent set, with ⌊ 2 n / 3 ⌋ \lfloor 2n/3 \rfloor and ⌈ n / 3 ⌉ \lceil n/3 \rceil vertices, respectively. Using techniques from the theory of graph limits and numerical analysis, we prove this claim for all n n sufficiently large. As an intermediate step, we prove an analogous result for a family of operators in the Hilbert space over L 2 [ 0 , 1 ] \mathscr {L}^2[0,1] . The second conjecture claims that for any fixed m ≤ n 2 / 4 m \leq n^2/4 , if G G maximizes spread over all n n -vertex graphs with m m edges, then G G is bipartite. We prove an asymptotic version of this conjecture. Furthermore, we construct an infinite family of counterexamples, which shows that our asymptotic solution is tight up to lower-order error terms. 
    more » « less
  3. null (Ed.)
    A graph on $2k+1$ vertices consisting of $$k$$ triangles which intersect in exactly one common vertex is called a $k-$friendship graph and denoted by $$F_k$$. This paper determines the graphs of order $$n$$  that have the maximum (adjacency) spectral radius among all graphs containing no $$F_k$$, for $$n$$ sufficiently large. 
    more » « less